(2020玉林)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=
AB.
(1)求证:四边形ABCD是正方形;
(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为S1,以HB,BC为邻边的矩形的面积为S2,且S1=S2.当AB=2时,求AH的长.

答案
(1)证明略;
(2).
知识点:无

(1)证明:∵OA=OB=OC=OD,
∴AC=BD,
∴平行四边形ABCD是矩形,
∵OA=OB=OC=OD=B,
∴OA2+OB2=AB2,
∴∠AOB=90°,
即AC⊥BD,
∴四边形ABCD是正方形.
(2)解:∵EF⊥BC,EG⊥AG,
∴∠G=∠EFB=∠FBG=90°,
∴四边形BGEF是矩形,
∵将线段DH绕点H顺时针旋转90°,得到线段HE,
∴∠DHE=90°,DH=HE,
∴∠ADH+∠AHD=∠AHD+∠EHG=90°,
∴∠ADH=∠EHG,
∵∠DAH=∠G=90°,
∴△ADH≌△GHE(AAS),
∴AD=HG,AH=EG,
∵AB=AD,
∴AB=HG,
∴AH=BG,
∴BG=EG,
∴矩形BGEF是正方形,
设AH=x,则BG=EG=x,
∵s1=s2.
∴x2=2(2-x),
解得:x=(负值舍去),
∴AH=.

略
