在锐角三角形ABC中,AH是BC边上的高,分别以AB,AC为一边,向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M.下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;
④∠EAM=∠ABC,其中正确结论的个数是( )

- A.4个
- B.3个
- C.2个
- D.1个
答案
正确答案:A
知识点:正方形的性质 全等三角形的判定与性质

在正方形ABDE和正方形ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
∴∠BAE+∠BAC=∠CAG+∠BAC,
即∠CAE=∠BAG,
∵在△ABG和△AEC中,
∴△ABG≌△AEC(SAS),
∴BG=CE,故①正确;
设BG,CE相交于点N,
∵△ABG≌△AEC,
∴∠ACE=∠AGB,
∵∠NCF+∠NGF=∠ACF+∠AGF=90°+90°=180°,
∴∠CNG=360°-(∠NCF+∠NGF+∠F)=360°-(180°+90°)=90°,
∴BG⊥CE,故②正确;
如图,过点E作EP⊥HA,交HA的延长线于P,过点G作GQ⊥AM于Q,
∵AH⊥BC,
∴∠ABH+∠BAH=90°,
∵∠BAE=90°,
∴∠EAP+∠BAH=180°-90°=90°,
∴∠ABH=∠EAP,即∠ABC=∠EAM,故④正确.
∵在△ABH和△EAP中,
∴△ABH≌△EAP(AAS),
∴EP=AH,
同理可得GQ=AH,
∴EP=GQ,
∵在△EPM和△GQM中,
∴△EPM≌△GQM(AAS),
∴EM=GM,
∴AM是△AEG的中线,故③正确.
综上所述,①②③④都正确.
故选A.

略
