已知:如图,AC与BD交于点O,∠A=35°,∠B=∠C=90°,求∠D的度数.

解:如图,
∵∠B=90°(已知)
∴∠A+∠BOA=90°(直角三角形两锐角互余)
横线处应填写的过程恰当的是( )
- A.
∵∠C=90°(已知)
∴∠D+∠COD=90°(直角三角形两锐角互余)
∵∠BOA=∠COD(对顶角相等)
∴∠A=∠D(等角的余角相等)
∴∠D=35°(等量代换) - B.
∵∠D+∠COD=90°(直角三角形两锐角互余)
∠BOA=∠COD(对顶角相等)
∴∠A=∠D(等角的余角相等)
∴∠D=35°(等量代换) - C.
∵AC⊥CD(已知)
∴∠C=90°(垂直的定义)
∴∠D+∠COD=90°(直角三角形两锐角互余)
∵∠BOA=∠COD(对顶角相等)
∴∠A=∠D(等角的余角相等)
∵∠A=35°(已知)
∴∠D=35°(等量代换) - D.
∵∠C=90°(已知)
∴∠D+∠COD=90°(直角三角形两锐角互余)
∵∠BOA=∠COD(对顶角相等)
∴∠A=∠D(等角的余角相等)
∵∠A=35°(已知)
∴∠D=35°(等量代换)
答案
正确答案:D
知识点:直角三角形两锐角互余 同角或等角的余角相等

如图,
第一步:读题标注;
第二步:从条件出发,看到直角想到互余.
由∠B=∠C=90°,根据直角三角形两锐角互余,得∠A+∠BOA=90°,∠D+∠COD=90°.
又∠BOA=∠COD,根据等角的余角相等,得∠A=∠D.
已知∠A=35°,等量代换,得∠D=35°.
故选D.

略
