如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,BC于M,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.

根据两人的作法可判断(    )

  • A.甲正确,乙错误
  • B.乙正确,甲错误
  • C.甲、乙均正确
  • D.甲、乙均错误

答案

正确答案:C

知识点:菱形的判定与性质  

解题思路


甲作法正确,理由如下:
如图,记线段AC和MN交于点O,

∵MN为AC的垂直平分线,
∴OA=OC,∠AOM=∠CON=90°,
在平行四边形ABCD中,AD∥BC,
∴∠OAM=∠OCN,
∴Rt△AOM≌Rt△CON(ASA),
∴OM=ON,
∴四边形ANCM是菱形.

乙作法正确,理由如下:
如图,记线段AE和BF交于点O,

∵AE,BF为∠A,∠B的平分线,
∴∠BAE=∠FAE,∠ABF=∠EBF,
在平行四边形ABCD中,AD∥BC,
∴∠FAE=∠BEA,∠EBF=∠AFB,
∴∠BAE=∠BEA,∠ABF=∠AFB,
∴AB=BE,AB=AF,
∴AF=BE,
又∵AF∥BE,
∴四边形ABEF为平行四边形,
∴平行四边形ABEF为菱形.

易错点

查看相关视频

下载次数:0

<<上一题   下一题>>