天天练

面积问题专项训练(北师版)

满分100分    答题时间30分钟

已经有620位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题12分) 如图,在△ABC中,点D是BC上的一点,点E是AD上的一点,若BD:CD=2:3,
DE:AE=1:4,△ABC的面积是8,则△DEC的面积为(    )

    核心考点: 等分点转移面积 

    2.(本小题12分) 如图,四边形ABCD中,对角线AC,BD相交于点O,若,则四边形ABCD的面积是(    )

      核心考点: 等分点转移面积 

      3.(本小题12分) 如图,梯形ABCD中,AD∥BC,△AOD和△DOC的面积分别为12和24,那么△BOC的面积为(    )

        核心考点: 平行线转移面积  等分点转移面积 

        4.(本小题12分) 图1为一张三角形纸片ABC,点P在BC上.将A折至点P,出现折痕BD,点D在AC上,如图2所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度之比为(    )

          核心考点: 折叠  等分点转移面积 

          5.(本小题13分) 如图,设E,F分别是△ABC的边AC,AB上的点,线段BE,CF交于点D.
          若△BDF,△BCD,△CDE的面积分别是6,14,14,则下列说法正确的是(    )

            核心考点: 等分点转移面积 

            6.(本小题13分) 如图,在长方形网格中,每一个小长方形的长为2,宽为1.A,B两点在网格格点上,若点C也在网格格点上,以A,B,C为顶点的三角形的面积为2,则满足条件的点C的个数是(    )

              核心考点: 平行线转移面积 

              7.(本小题13分) 如图,正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF的中点,正方形BEFG的边长为4,则△DEK的面积为(    )

                核心考点: 平行线转移面积 

                8.(本小题13分) 如图,在△ABC中,D是BC上一点,且BD:CD=2:1,在AB上取一点E,连接DE并延长到F,使FE:ED=2:1,连接CF,若△BDE的面积为20,则△CDF的面积为(    )

                  核心考点: 等分点转移面积