天天练

直角三角形性质应用(勾股定理)(北师版)

满分100分    答题时间30分钟

已经有2383位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题11分) 如图,在直线上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别为1,3,5,正放置的四个正方形的面积分别为(    )

    核心考点: 勾股定理 

    2.(本小题11分) 如图,下列说法:①若∠ACB=90°,AD=BD,则AD=BD=CD;②若∠ACB=90°,AD=CD,则AD=BD=CD;③若∠ACB=90°,BD=CD,则AD=BD=CD.其中正确的个数是(    )

      核心考点: 直角三角形两锐角互余 

      3.(本小题11分) 如图,已知AB⊥CD,△ABD,△BCE都是等腰直角三角形,如果CD=8,BE=3,则AC=(    )

        核心考点: 勾股定理  等腰直角三角形 

        4.(本小题11分) 在△ABC中,AB=25,AC=17,高AD=15,则△ABC的周长是(    )

          核心考点: 勾股定理 

          5.(本小题11分) 已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
          ①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④
          其中正确结论的个数是(    )

            核心考点: 勾股定理  等腰直角三角形 

            6.(本小题12分) 设P为等腰直角三角形ABC的斜边AB上或其延长线上一点,若,则(    )

              核心考点: 勾股定理  等腰直角三角形 

              填空题(本大题共小题, 分)

              7.(本小题11分) 已知:如图,在△ABC中,∠A=40°,∠B=80°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,则∠EDF=____度.

                核心考点: 直角三角形两锐角互余 

                8.(本小题11分) 如图,在等边三角形ABC中,D,E分别为AB,BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则∠FAG=____度.

                  核心考点: 直角三角形两锐角互余 

                  9.(本小题11分) 如图,在△ABC中,CE平分∠ACB交AB于E,过E作EF∥BC交∠ACD的平分线于F,EF交AC于M,若CM=5,则____.

                    核心考点: 直角三角形的性质  勾股定理