天天练

几何最值问题(二)

满分100分    答题时间30分钟

已经有492位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题16分) 如图,在矩形ABCD中,AB=4,AD=6,E是AB的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△,连接,则长度的最小值是(    )

    核心考点: 几何最值问题  翻折变换(折叠问题) 

    2.(本小题16分) 如图,在Rt△ACB中,∠ACB=90°,AC=6,BC=8,P,Q分别是边BC,AC上的动点.
    将△PCQ沿PQ翻折,点C的对应点为,连接,则长度的最小值是(    )

      核心考点: 几何最值问题  翻折变换(折叠问题) 

      3.(本小题17分) 如图,在△ABC中,∠BAC=120°,AB=AC=4,M,N分别为边AB,AC上的动点,将△AMN沿MN翻折,点A的对应点为,连接,则长度的最小值为(    )

        核心考点: 几何最值问题  翻折变换(折叠问题) 

        4.(本小题17分) 如图,在直角梯形ABCD中,AD⊥AB,AB=6,AD=CD=3,点E,F分别在线段AB,AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,DP长度的最小值为(    )

          核心考点: 几何最值问题  翻折变换(折叠问题) 

          5.(本小题17分) 如图,折叠矩形纸片ABCD,使点B落在AD边上,折痕EF的两端分别在AB,BC上(含端点).若AB=6,BC=10,则的取值范围是(    )

            核心考点: 几何最值问题  翻折变换(折叠问题) 

            6.(本小题17分) 如图,在三角形纸片ABC中,已知∠ABC=90°,AC=4,BC=3,过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的点P处,折痕为MN,当点P在直线上移动时,折痕的端点M,N也随之移动,若限定端点M,N分别在AB,BC边上(包括端点)移动,则线段AP长度的最大值与最小值之差为(    )

              核心考点: 几何最值问题  折叠问题(翻折变换)