校讯通首页
家校互动
天天练
博客
家校通首页
博客
天天练
众享教育首页
天天练
您好,请
登录
登录学科测评
学习资料
老师推荐
系统通知
订单
包月订单
课程
天天练
收藏
关注
成绩
天天练
试卷预览
试卷下载
评论
类比探究之结构类比(平行夹中点)(北师版)
满分100分 答题时间30分钟
已经有
203
位用户完成了练习
推荐给家长
推荐给好友
推荐给好友
单选题(本大题共
小题, 共
分)
1
.
(本小题16分)
如图1,在长方形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形
ABCD内部,延长AF交CD于点G,则FG=CG,请证明.小明发现把AE延长与GC的延长线交于一点H,证明
△AHG是等腰三角形即可证明结论.如图2,将(1)中的长方形ABCD改为四边形,其中,AB∥CD,
AD∥BC,AB=CD,AD=BC,且其他条件不变,我们可以结合小明的思路,延长AE与GC的延长线交于一点H,此时,证明△AHG是等腰三角形的依据是( )
核心考点:
类比探究问题
2
.
(本小题16分)
如图1,在△ABC中,P为BC边的中点,直线a绕顶点A旋转,若B,P在直线a的异侧,
BM⊥直线a于点M,CN⊥直线a于点N,连接PM,PN.要证PM=PN,只需延长MP交CN于点E,通过说明某对三角形全等就可以证明此结论.此时,证明结论成立的理论基础是( )
核心考点:
类比探究问题
3
.
(本小题16分)
(上接第2题)若直线a绕点A旋转到图2的位置时,点B,P在直线a的同侧,其他条件不变,要证明PM=PN,我们可以进行和上题一样的操作,则需要证明的全等三角形是( )
核心考点:
类比探究问题
4
.
(本小题16分)
如图1,在正方形ABCD的边AB上取一点E,作EF⊥AB交BD于点F,取FD的中点G,
连接EG,CG,易证EG=CG且EG⊥CG.如图2,将△BEF绕点B逆时针旋转90°,如图3,将△BEF绕点B逆时针旋转180°,都可以得到和图1相同的结论.若不想证明三点共线,则最好作什么样的辅助线.( )
核心考点:
类比探究问题
5
.
(本小题16分)
(上接第4题)在证明过程中,选用什么样的思路,可以类比解决三问.( )
①证全等;②再证全等;③等角对等边;④等边对等角;⑤等腰直角三角形的性质.
核心考点:
类比探究问题
6
.
(本小题20分)
(上接第4,5题)类比解决三问的过程中,需要证明三角形全等,那么证全等所依据的判定定理(依次)是( )
核心考点:
类比探究问题
推荐给家长
推荐给好友
推荐给好友
您有
60秒
的时间
预览
试卷,60秒后将
自动进入
在线答题页面
提交试卷后,系统将进行
批改
并提供
答案
不再提醒
预览时间还剩
60
秒
或者,
立即