天天练

三角形全等之截长补短(三)(北师版)

满分100分    答题时间30分钟

已经有291位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题33分) 已知:如图,在△ABC中,∠1=∠2,AC=AB+BD.
求证:∠ABC=2∠C.

先在图上走通思路后再填写空格内容:
①已知AC=AB+BD,是线段的和差倍分,考虑         ,这里采用截长来证明;
②结合条件∠1=∠2,考虑                             (辅助线),然后证全等,理由是       ,由全等的性质得         ,为接下来证明准备条件;
③由已证的全等和已知AC=AB+BD,得        ,等量代换ED=EC,从而得∠AED=2∠C,即∠ABC=2∠C.
以上空缺处依次所填最恰当的是(    )

    核心考点: 三角形全等之截长补短 

    2.(本小题33分) 已知:如图,∠ACB=∠ABC=60°,∠EDF=60°,BD=CD,∠DBC=∠DCB=30°.
    求证:EF=BE+CF.

    先在图上走通思路后再填写空格内容:
    ①要证明EF=BE+CF,是线段的和差倍分,考虑         ,解决本题用的是     
    ②结合已知条件∠ACB=∠ABC=60°,∠DBC=∠DCB=30°,BD=CD,考虑                               (辅助线),然后证全等,理由是       ,由全等的性质得         ,为接下来的全等准备条件;
    ③由已证的全等和条件∠EDF=60°,∠BDC=120°,得        ,然后证全等,理由是       ,由全等的性质得         ,从而得EF=BE+CF.
    以上空缺处依次所填最恰当的是(    )

      核心考点: 三角形全等之截长补短 

      3.(本小题34分) 已知:如图,在四边形ABCD中,AB=AD,∠ADC=∠B=∠BAD=90°,点E在BC的延长线上,点F在CD的延长线上,EAF=45°.
      求证:DF=BE-EF.

      先在图上走通思路后再填写空格内容:
      ①要证明DF=BE-EF,是线段的和差倍分,考虑         ,解决本题用的是     
      ②结合条件AB=AD,∠ADC=∠B=90°,考虑                              (辅助线),然后证全等,理由是       ,由全等的性质得         ,为接下来的全等准备条件;
      ③由已证的全等和条件∠BAD=90°,∠EAF=45°,得        ,然后证全等,理由是       ,由全等的性质得         ,从而得DF=BE-EF.
      以上空缺处依次所填最恰当的是(    )

        核心考点: 三角形全等之截长补短