校讯通首页
家校互动
天天练
博客
家校通首页
博客
天天练
众享教育首页
天天练
您好,请
登录
登录学科测评
学习资料
老师推荐
系统通知
订单
包月订单
课程
天天练
收藏
关注
成绩
天天练
试卷预览
试卷下载
评论
四边形之类比探究(组合特征一)(北师版)
满分100分 答题时间30分钟
已经有
4
位用户完成了练习
推荐给家长
推荐给好友
推荐给好友
单选题(本大题共
小题, 共
分)
1
.
(本小题16分)
如图,在△ABC中,∠BAC=90°,AB=AC,点D在直线BC上,△ADE是等腰直角三角形,∠DAE=90°,AD=AE,连接CE.
(1)如图1,当点D在线段BC上时,则DC,CE,AC之间的数量关系为( )
核心考点:
类比探究问题
2
.
(本小题16分)
(上接试题1)(2)如图2,当点D在线段CB的延长线上时,则线段DC,CE,AC之间的数量关系为( )
核心考点:
类比探究问题
3
.
(本小题16分)
(上接试题1,2)(3)如图3,当点D在线段BC的延长线上时,则线段DC,CE,AC之间的数量关系为( )
核心考点:
类比探究问题
4
.
(本小题16分)
如图1所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上.连接BE,CD,M,N分别为BE,CD的中点,容易证明△AMN是等腰三角形.在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图2所示的图形,则在图2中下列说法不正确的是( )
核心考点:
类比探究问题
5
.
(本小题16分)
如图1,在△ABC中,P为BC边的中点,直线a绕顶点A旋转,若B,P在直线a的异侧,
BM⊥直线a于点M,CN⊥直线a于点N,连接PM,PN.要证PM=PN,只需延长MP交CN于点E,通过说明某对三角形全等就可以证明此结论.此时,证明结论成立的理论基础是( )
核心考点:
类比探究问题
6
.
(本小题20分)
(上接试题5)若直线a绕点A旋转到图2的位置时,点B,P在直线a的同侧,其他条件不变,要证明PM=PN,我们可以进行和上题一样的操作,则需要证明的全等三角形是( )
核心考点:
类比探究问题
推荐给家长
推荐给好友
推荐给好友
您有
60秒
的时间
预览
试卷,60秒后将
自动进入
在线答题页面
提交试卷后,系统将进行
批改
并提供
答案
不再提醒
预览时间还剩
60
秒
或者,
立即