天天练

平行四边形存在性(二)

满分100分    答题时间30分钟

已经有1725位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题25分) 如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点P(1,k)在直线BC上.已知点M在x轴上,点N在抛物线上,若以A,M,N,P为顶点的四边形是平行四边形,则满足条件的点M有(    )个.

    核心考点: 二次函数与几何综合  平行四边形的存在性 

    2.(本小题25分) 如图,在平面直角坐标系xOy中,四边形ABCO为矩形,点C在x轴上,点A在y轴上,点B的坐标为(3,4).E,F分别在OA,AB边上,且点F的坐标为(2,4),将矩形ABCO沿直线EF折叠,点A落在BC边上的点G处.若点N在x轴上,点M在直线EF上,且以M,N,F,G为顶点的四边形是平行四边形,则点M的坐标为(    )

      核心考点: 二次函数与几何综合  平行四边形的存在性 

      3.(本小题25分) 如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.P为抛物线上一动点,Q为直线y=-x上一动点,若以O,B,P,Q为顶点的四边形是平行四边形,则点Q的横坐标为(    )

        核心考点: 二次函数与几何综合  平行四边形的存在性 

        4.(本小题25分) 如图,抛物线与直线交于A,B两点,线段MN在线段AB上移动,且MN=2,点A,M分别在点B,N的左侧.设点N的横坐标为,过点M作x轴的垂线,垂足为点P,过点N作x轴的垂线,交抛物线于点Q,若以P,M,Q,N为顶点的四边形是平行四边形,则n的值为(    )

          核心考点: 二次函数与几何综合  平行四边形的存在性