天天练

综合练习(四)

满分100分    答题时间30分钟

已经有514位用户完成了练习

单选题(本大题共小题, 分)

1.(本小题20分) 如图,二次函数的图象与x轴交于点A(-3,0)和点B,与y轴交于点,且当x=-4和x=2时二次函数的函数值相等.连接AC,BC.
(1)点M,N同时从点B出发,分别沿线段BA,BC运动,速度均为每秒1个单位长度,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t秒,连接MN,将△BMN沿MN翻折.若点B恰好落在线段AC上的点P处,则点P的坐标为(    )

    核心考点: 翻折变换(折叠问题)  二次函数与几何综合  函数处理框架 

    2.(本小题20分) (上接第1题)在(1)的条件下,若二次函数图象的对称轴上存在点Q,使得以B,N,Q为项点的三角形与△ABC相似,则相应的t的值为(    )

      核心考点: 翻折变换(折叠问题)  二次函数与几何综合  函数处理框架 

      3.(本小题20分) 如图,在平面直角坐标系中,边长为的正方形ABCD的顶点A,B均在x轴正半轴上,连接OD,BD,△BOD的外心I在中线BF上,BF与AD交于点E.
      (1)过O,E,B三点的抛物线的解析式为(    )

        核心考点: 三角形的外接圆与外心  三线合一 

        4.(本小题20分) (上接第3题)(2)若在(1)中求出的抛物线上存在点P(异于点B),使得点P关于直线BF的对称点在x轴上,则点P的坐标为(    )

          核心考点: 二次函数与几何综合 

          5.(本小题20分) (上接第3,4题)(3)如图,连接OE,点P在直线BF上,若△BPD与△OED相似,则满足条件的点P共有(    )个.

            核心考点: 相似三角形的存在性