如图,在四边形ABCD中,AE⊥BC,且BE=CE,AF⊥CD,且CF=DF,若EAF=80°,∠CBD=30°,
则∠ABC的度数为( )

- A.35°
- B.40°
- C.45°
- D.60°
答案
正确答案:B

如图,
连接AC
∵AE⊥BC,且BE=CE,AF⊥CD,且CF=DF,
∴△ABE≌△ACE,△ACF≌△ADF
∴AB=AC, AC=AD
∴AB=AC=AD
∵AF⊥DC,AE⊥BC
∴∠CAF=∠DAF,∠CAE=∠BAE
∴∠DAB=2∠EAF=160°
∵AB=AD
∴∠ABD=(180°-160°)÷2=10°
∴∠ABC=∠CBD+∠ABD =30°+10°=40°
故选B

略
