1编号:98057题型:单选题测试正确率:0%
2编号:98054题型:单选题测试正确率:0%
3编号:98053题型:单选题测试正确率:0%
4编号:98052题型:单选题测试正确率:0%
如图1,在正方形ABCD的边AB上取一点E,作EF⊥AB交BD于点F,取FD的中点G,
连接EG,CG,易证EG=CG且EG⊥CG.如图2,将△BEF绕点B逆时针旋转90°,如图3,将△BEF绕点B逆时针旋转180°,都可以得到和图1相同的结论.若不想证明三点共线,则最好作什么样的辅助线.( )
5编号:98051题型:单选题测试正确率:0%
6编号:98050题型:单选题测试正确率:0%
7编号:98049题型:单选题测试正确率:0%
如图1,在长方形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,
点F在矩形ABCD内部,延长AF交CD于点G,则FG=CG,请证明.小明发现把AE延长与GC的延长线交于一点H,证明△AHG是等腰三角形即可证明结论.如图2,将(1)中的长方形ABCD改为四边形,
其中,AB∥CD,AD∥BC,AB=CD,AD=BC,且其他条件不变,我们可以结合小明的思路,延长AE与GC的延长线交于一点H,此时,证明△AHG是等腰三角形的依据是( )
9编号:98044题型:单选题测试正确率:0%
问题情境:
张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,P为BC边上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP的面积之和等于△ABC的面积可以证得:
PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
(1)变式探究:如图3,当点P在BC的延长线上时,其他条件不变,求证:PD-PE=CF;
(2)结论运用:如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BC,垂足分别为G,H,若AD=8,CF=3,求PG+PH的值;
(3)迁移拓展:图5是一个航模的截面示意图,已知在四边形ABCD中,E为AB边上的一点,ED⊥AD,
EC⊥CB,垂足分别为D,C,且,
.M,N分别为
AE,BE的中点,连接DM,CN,求△DEM与△CEN的周长之和.
(2)中PG+PH的值为( )