1编号:5263题型:探究题测试正确率:49.12%

如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用表示出直线BE、DF形成的锐角.

2编号:5262题型:解答题测试正确率:50.0%

如图,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例
当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.

思考发现
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究(1)正方形FGCH的面积是          ;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.


联想拓展
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.
当b>a时,如图5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.

3编号:5258题型:填空题测试正确率:69.23%

(2011四川凉山)已知菱形ABCD的边长是8,点E在直线AD上,若DE=3,连接BE与对角线AC相交于点M,则的值是_______.

4编号:5257题型:填空题测试正确率:78.85%

(2010内蒙古)已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是  个.

5编号:5256题型:填空题测试正确率:76.92%

(2011江西南昌)如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB=30°,有以下四个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG:DE=,其中正确结论的序号是______.

6编号:5255题型:填空题测试正确率:82.69%

(2011辽宁丹东)已知:如图,DE是△ABC的中位线.点P是DE的中点,CP的延长线交AB于点Q,那么SDPQ:SABC=          .

7编号:5254题型:填空题测试正确率:73.08%

(2011内蒙古呼和浩特)如图所示,在梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为     .

8编号:5253题型:单选题测试正确率:55.71%

如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合).过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP.设△AOC的面积为S1,△BOD的面积为S2,△POE的面积为S3,则()

9编号:5252题型:单选题测试正确率:50.0%

如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A'处,得新正方形A'B'C'D',新正方形与原正方形重叠部分(图中阴影部分)的面积是()

10编号:5251题型:单选题测试正确率:45.71%

如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()