如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B,C,G在同一直线上,点M是AE的中点。
(1)探究线段MD,MF的位置关系,并证明。

解题思路:(1)小明猜测MD⊥MF,看到图1中M是AE的中点,并且AD∥EF,考虑延长DM交EF于点H,如下图,先利用全等三角形的判定定理     ,证明     ,由全等的性质可以得到     ,所以CD=EH,进而可以得到FD=FH,在等腰△DFH中,由等腰三角形三线合一可以得到     ,从而证明结论。
以上横线处,依次所填正确的是(    )
①AAS;②ASA;③SAS;④△ADM≌△EHM;⑤△FDM≌△FHM;⑥DM=HM,AD=HE;⑦FD=FH;⑧MF⊥DH;⑨FM平分∠DFH。

  • A.①④⑥⑨
  • B.①⑤⑦⑨
  • C.②④⑥⑧
  • D.②⑤⑦⑨

答案

正确答案:C

知识点:类比探究问题  

解题思路



易错点

查看相关视频

下载次数:0

<<上一题   下一题>>